
LLNL-PRES-677197

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Kripke v1.0 – An Sn Transport Mini App
LLNL

October 22, 2014

Lawrence Livermore National Laboratory LLNL-PRES-677197
2

 Why another Mini(/Proxy) App?

 What is Kripke?

• How it relates to ARDRA

• How it enables research

 Running Kripke

• Options

• Test Problems

 Results

 Conclusions

Overview

Lawrence Livermore National Laboratory LLNL-PRES-677197
3

 None of the existing Co-Design Sn-Transport Mini-
Apps are representative of ARDRA
• SNAP (LANL)

— Fortran

— KBA parallel decomposition

— Sweep contains update of moments

• UMT (LLNL)
— C + Fortran

— Radiation Transport

— Unstructured

 Refactor of ARDRA
• Add Concepts: Group Sets, Direction Sets, Zone Sets

• Possibly Change: Data Striding and Loop Nesting

Why another Mini App?

Lawrence Livermore National Laboratory LLNL-PRES-677197
4

 Major Unanswered Questions
• How does Data Striding and Loop Nesting affect:

— Memory Performance

– Bandwidth, Cache Efficiency

— Parallelism

– Instruction (SIMD?), Thread (OpenMP, GPU, etc), Task(MPI)

— What is the interplay with the Platform/Compiler?

• Investigate New Programming Models

— RAJA, Kokkos, OCCA, etc.

• Investigate AMR

— Load Balancing

— Partitioning Schemes

— Sweep performance on imbalanced loads

 So: We need a simple Mini App that is representative of
ARDRA, but also flexible enough to perform exploratory
research.
• Ardra ~200k lines C/C++

• Kripke ~2k lines C++

Why another Mini App?

Lawrence Livermore National Laboratory LLNL-PRES-677197
5

1

𝜈

𝜕𝜓

𝜕𝑡
 + Ω ⋅ 𝛻𝜓 + 𝜎𝜙 = 𝜎𝑠𝜓 + 𝜎𝑓𝜙 + 𝑞

Simplified “Steady State” Problem

𝐻Ψ𝑖+1 = 𝐿+𝑆LΨ𝑖 + 𝑞

𝐻Ψ𝑖+1 = 𝐿+ILΨ𝑖 + 0

𝐻Ψ𝑖+1 = 𝐿+LΨ𝑖

In Kripke:

• S is the identity

• No external sources

Lawrence Livermore National Laboratory LLNL-PRES-677197
6

Kripke - A Proxy for ARDRA

𝐻Ψ𝑖+1 = 𝐿+LΨ𝑖

• Sweep Kernel (On Core)

• 3D Diamond Difference

• Parallel Sweep Algo. (MPI)

• LPlusTimes Kernel

(moments -> discrete)

• LTimes Kernel

(discrete -> moments)

Not a useful calculation… but representative of ARDRA’s computational load

Kernels MPI Tasks

1 16 64 256

Sweep (On Core + MPI) 35% 40% 47% 48%

LTimes + LPlusTimes 51% 47% 42% 41%

Total (Kripke’s Coverage) 86% 87% 89% 89%

3D Jezebel Benchmark Problem: Using ARDRA on rzuseq.llnl.gov (BG/Q)

12x12x12 zones/task, DD, s16, P4 scattering, 84 groups, spatial decomp, 16 tasks/node

Lawrence Livermore National Laboratory LLNL-PRES-677197
7

Solver Iteration:

 Iterate until convergence:
• Compute RHS

— LPlusTimes, Scattering, LTimes

• Run Parallel Sweep Algorithm

Parallel Sweep Algorithm:

 Foreach Group G:
• Pipe-Line Directions D:

— When a given D has upwind dependencies met (either from
neighbor or BC):

– Run Sweep Kernel the local spatial domain for G,D (Sweep Kernel)

– Send downwind solution to neighbors

“ARDRA Solver”

Unit of Work: DD Sweep over one Direction, one Group and all local zones

Lawrence Livermore National Laboratory LLNL-PRES-677197
8

Solver Iteration:

 Iterate niter times:
• Compute RHS

— LPlusTimes, Scattering, LTimes

• Run Parallel Sweep Algorithm

Parallel Sweep Algorithm:

 Foreach GroupSet GS:
• Pipe-Line DirectionSets DS:

— When a given DS has upwind dependencies met (either from
neighbor or BC):

– Run Sweep Kernel the local spatial domain for all G,D in GS, DS
(Sweep Kernel)

– Send downwind solution to neighbors

“Kripke Solver”

Unit of Work: DD Sweep a subset of Directions, a subset of Groups and local zones

Lawrence Livermore National Laboratory LLNL-PRES-677197
9

ARDRA in a Kripke World

Ψ 𝐺 𝐷 [𝑍]

Ψ 𝐺𝑆 𝐷𝑆 𝐺 [𝐷][𝑍] Ψ 𝐺𝑆 𝐷𝑆 1 [1][𝑍]

ARDRA

(spatial parallel

decomp)

Kripke
GS = # Group Sets

DS = # Dir. Sets

G = # Groups per GS

D = # Dir. Per DS

GS = # Ardra Groups

DS = # Ardra Dirs.

1 group per GS

1 dir. per DS

(“Unit of Work” is in red)

We can model the ARDRA’s view

of the problem in Kripke by forcing

the unit of work to have 1 direction

and 1 group.

Lawrence Livermore National Laboratory LLNL-PRES-677197
10

 GroupSet and DirectionSet concepts was borrowed from Texas A&M’s
code PDT
• PDT also uses Zone Sets

— Allows for domain overloading and KBA

— Future feature of Kripke

 Allows tuning the size of the unit of work:
• Changes message sizes and # of messages

— Interplay with parallel sweep performance

• Allows for more on-node parallelism

— Take advantage of SIMD and OpenMP

• Cache performance

 Kernels now act on a 3d index space (GDZ) instead of 1d space (Z) as
in ARDRA

Flexibility of Sets in Kripke

How do we stride the G, D and Z of our unknowns

to create the most efficient kernels?

Lawrence Livermore National Laboratory LLNL-PRES-677197
11

 Kripke keeps the [GS][DS][-][-][-] as the
outermost strides, in that order

 Kripke implements all 6 permutations of the data
strides for the unit of work:

• [G][D][Z], [G][Z][D], [D][G][Z],

• [D][Z][G], [Z][G][D], [Z][D][G]

 We call these “Nestings” as they change the
loop nesting of each of the kernels.

 …. and YES, we implement each of the kernels
for each of the 6 nestings.

“Nestings”

Lawrence Livermore National Laboratory LLNL-PRES-677197
12

DGZ Nesting:

 Foreach d in D:

• Foreach g in G:

— Foreach z in Z:

– Apply DD operator

sweepKernel Psuedocode Example

ZDG Nesting:

 Foreach z in Z:

• Foreach d in D:

— Foreach g in G:

– Apply DD operator

 Loops are re-nested to optimize as much

as possible.

Ψ 𝐺𝑆 𝐷𝑆 𝐷 [𝐺][𝑍] Ψ 𝐺𝑆 𝐷𝑆 𝑍 [𝐷][𝐺]

So what???

Lawrence Livermore National Laboratory LLNL-PRES-677197
13

DGZ Nesting:

 Foreach d in D:

• Foreach g in G:

— Foreach z in Z:

– Apply DD operator

sweepKernel Psuedocode Example

• Sweeps are sequential in nature

• Difficult to thread or get SIMD

• Hyperplane methods show promise

• Each G and D are independent in the sweep

• Can easily use OpenMP threading here

ZDG Nesting:

 Foreach z in Z:

• Foreach d in D:

— Foreach g in G:

– Apply DD operator

Ψ 𝐺𝑆 𝐷𝑆 𝐷 [𝐺][𝑍] Ψ 𝐺𝑆 𝐷𝑆 𝑍 [𝐷][𝐺]

Lawrence Livermore National Laboratory LLNL-PRES-677197
14

DGZ Nesting:

 Foreach d in D:

• Foreach g in G:

— Foreach z in Z:

– Apply DD operator

ZDG Nesting:

 Foreach z in Z:

• Foreach d in D:

— Foreach g in G:

– Apply DD operator

sweepKernel Psuedocode Example

• Sweeps are sequential in nature

• Accept that and move on?

• Can easily use OpenMP threading over D

• Can easily get SIMD instructions over G

Ψ 𝐺𝑆 𝐷𝑆 𝐷 [𝐺][𝑍] Ψ 𝐺𝑆 𝐷𝑆 𝑍 [𝐷][𝐺]

Lawrence Livermore National Laboratory LLNL-PRES-677197
15

Nestings? Which one? Oh no!

• Current C/C++ and language abstractions do not:

• Allow the re-striding of data… NOR

• Re-nest the loops in a performant way

• In order to investigate how nestings impact performance on different

architectures, we must implement all of them!!!

• Most codes choose a nesting based on ease of implementation, or

other design constraints, not based on performance.

• If we want to refactor our codes to use a specific nesting:

• Which nesting is the best?

• How do we choose GS and DS?

• How do architectures play into this?

• Kripke will help answer these questions

Lawrence Livermore National Laboratory LLNL-PRES-677197
16

 Command-Line Parameters
• Number of GS and G-per-set

• Number of DS-per-octant and D-per-set

• Nestings (DGZ, DZG, GDZ, GZD, ZDG, ZGD)

• Number of scattering Legendre moments
— L, L+ are dimensioned by total directions, and number of moments

• Total number of zones in X, Y, Z

• Spatial decomposition in Px, Py, Pz

• Number of iterations (niter)

 Parameter Space
• Sets of GS:G, DS:G, and Nestings can be specified

• Parameter space is product of parameter sets

• Kripke runs each “point” in the defined parameter space

Kripkie’s Runtime Parameters

Lawrence Livermore National Laboratory LLNL-PRES-677197
17

Test Problem Definitions

Name
Directions

(per Octant)
Groups

Scattering

Order

Zones/

Core

Psi

(Mb)

Phi

(Mb)

KP0 96 (12) ~S8 64 P4
1728

(12x12x12)
81.0 13.5

KP1 256 (32) ~S12 64 P4
1728

(12x12x12)
216.0 13.5

KP2 96 (12) 128 P4
1728

(12x12x12)
162.0 27.0

KP3 96 (12) 64 P9
1728

(12x12x12)
81.0 68.344

Problems are defined “per-core”, and weak-scaled by increasing zone count.

Lawrence Livermore National Laboratory LLNL-PRES-677197
18

Comparison 210 “points” KP0

Point

S
o
lv

e
 T

im
e
 (

s
e
c
o
n
d
s
)

• >1 order magnitude range

• (~2 on BG/Q)

• Best:

• 44% faster than ARDRA

• Environment

• rzzeus (Xeon E5530)

• 1 Node, 8 MPI tasks

• 1 Thread/Task

• Nestings: DGZ, DZG, GDZ,

GZD, ZDG, ZGD

• GS:G = {1:64, 2:32, 4:16, 8:8,

16:4, 32:2, 64:1}

• DS:D = {1:12, 2:6, 4:3, 6:2,

12:1}

ARDRA

Best result, typical for 1 Node

Lawrence Livermore National Laboratory LLNL-PRES-677197
19

OpenMP Weak Scaling KP0

1.2000

1.4000

1.6000

1.8000

2.0000

2.2000

2.4000

2.6000

2.8000

3.0000

4 8 16 32 64

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Weak Scaling
KP0 -- openmp-1.0 -- Sequoia

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

0.2800

0.7800

1.2800

1.7800

2.2800

1 2 4 8 16

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Weak Scaling
KP0 -- openmp-1.0 -- rzmerl

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

Lawrence Livermore National Laboratory LLNL-PRES-677197
20

3.5000

4.0000

4.5000

5.0000

5.5000

6.0000

6.5000

7.0000

7.5000

8.0000

4 8 16 32 64

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Weak Scaling
KP3 -- openmp-1.0 -- Sequoia

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

0.7700

1.7700

2.7700

3.7700

4.7700

5.7700

1 2 4 8 16

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Weak Scaling
KP3 -- openmp-1.0 -- rzmerl

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

OpenMP Weak Scaling KP3

Lawrence Livermore National Laboratory LLNL-PRES-677197
21

0.0740

0.7400

1 2 4 8 16 32 64

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Strong Scaling
KP0 -- openmp-1.0 -- Sequoia

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

0.0170

0.1700

1 2 4 8 16

S
o

lv
e
 T

im
e
 (

S
e
c
o

n
d

s
)

Number of OpenMP Threads

OpenMP Strong Scaling
KP0 -- openmp-1.0 -- rzmerl

DGZ

DZG

GDZ

GZD

ZDG

ZGD

Ideal

OpenMP Strong Scaling KP0

Lawrence Livermore National Laboratory LLNL-PRES-677197
22

-0.05

0

0.05

0.1

0.15

0.2

0.25

DGZ DZG GDZ GZD ZDG ZGD

O
p

e
n

M
P

 O
v

e
rh

e
a
d

 (
fr

a
c
ti

o
n

)

Data Nesting

OpenMP Overhead on rzmerl
(ICC 14)

1-Thread vs. Serial

KP0

KP1

KP2

KP3

-0.04

-0.02

0

0.02

0.04

0.06

0.08

DGZ DZG GDZ GZD ZDG ZGD

O
p

e
n

M
P

 O
v

e
rh

e
a
d

 (
fr

a
c
ti

o
n

)

Data Nesting

OpenMP Overhead on Sequoia
(XLC 12)

1-Thread vs. Serial

KP0

KP1

KP2

KP3

OpenMP Overhead

Lawrence Livermore National Laboratory LLNL-PRES-677197
23

 Kripke is a new Proxy/Mini app for ARDRA
• Representative of our current state of the art at LLNL

• Will provide critical feedback for further Sn development

 Performance is greatly impacted by:
• Architecture / Operating System

• Decomposition

• Data Layout

• Problem Specification

 Raises More Questions
• What nesting do we adopt?

— More than One???

• How do we choose GS and DS?
— Possibly use Machine Learning?

Conclusion

Lawrence Livermore National Laboratory LLNL-PRES-677197
24

 Port to New platforms

• GPU

— Cuda?

— Hyperplane methods?

• MIC

 AMR Testbed

 Task Graph models for sweeps

 Unstructured Mesh

 Add more kernels to Kripke
• Scattering kernel

• 2drz (Cylindrical) Geometry

• DFEM Spatial Discretizations

 Anyone interested? Kripke has been released

• Will eventually be available on LLNL CoDesign site

• Contact me: kunen1@llnl.gov

Future Work or Ideas?

